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1. ASYMPTOTIC EQUIVALENCE OF GENMETA ESTIMATOR AND SIMPLE
META-ANALYSIS ESTIMATOR WHEN ALL THE REDUCED MODELS ARE THE SAME
TO THE MAXIMAL MODEL

When all the reduced models are the same to the maximal model, it follows 0 = 3%,
Xa, =Xandg, = ffork=1,2,..., K. Then, for each k, u,(X; 8*,6;) = up(X; 5%, 8*) =
[ si(y | Xa;B8%)f(y | X;B*)dy = 0. By the definition of A, we have A = 0. On the other
hand, assuming Fy | x {Ve, sk(0;)} = Ve, Ey|x {s1(0})} with s.(0;) = s1.(Y | Xa,;0}), it fol-
lows Ay, = (1/ck)I1(65), where 1(6;) is the Fisher’s information matrix of g or f. Then, the
optimal C'is

Copt = Al = diag(e1 X, ..., cxY),

where ¥ =1 (0}2)*1. Denote as C’Opt a consistent estimator of Cop. Then, the GENMETA esti-
mator with Copy is

Bopt = MgminBUg(Bv é)éothn (ﬁ7 é)

Under regularity conditions similar to those in Theorem 1, Bopt — (B* in probability. By Mean
Value Theorem,

UH(BOPU é) = Un(ﬁ*a é) + Gn(B, é)(Bopt - B*)v (1)
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2 P. KUNDU, R. TANG AND N. CHATTERJEE

B
)

where 3 is the mean value and G,

( OU,(83,0)/08 | 5=+ By the first order condition, Sop
satisfies Gg(ﬂom 0) oth Boptaa

,0) =
= 0. Left-multiplying (1) by GT (50pt, ) opts it follows

Bopt :_{GT(Boptv ) optG (57 )} 1{GT(5opt7 ) oth (6* A)} (2)
Also,

9 ) .
5 %Ul(ﬁael) |5:50pt

Gn(BOptyé) - %Un(ﬁ,é) ‘B:Bm:

%’UJK(Bv OK) |6:Bopt

Under regularity conditions similar to those in Theorem 1, duy, (3, 6y, ) /93 | B = Y14 0,(1)
for each k. Then,

2—1
Gn(Bopis 0) = |+ | +0p(D). 3)
271
Similarly,
271
Gu(B,0)=| 1+ | +0p(1). 4)
271

On the other hand, under regularity conditions similar to those in Theorem 1, wuy (5", ék) =
~2 (O — B)* + 0p(1/n'/?). Then,

(6, — %)
Un(8",0) = — : +0p(1/n'/?). 5)
bk - B)
Hence, by (2), (3), (4), (5) and Slutsky’s theorem,

Bopt—ﬂ*z(i ¢) {ch (O — B) b + 0p(1/n1/2). ©)
k

On the other hand,
2y (B
b= {323 () Y -
- (i6k>_l{ ick(ék - ﬁ*)} +op(1/n'/?). @)

Therefore, by (6) and (7), Bopt = Buneta + op(1/ nl/?).
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2. NEWTON-RAPHSON’S METHOD AND ITERATIVELY REWEIGHTED LEAST SQUARES
ALGORITHM

In this section we provide a derivation of the Newton-Raphson’s method for GENMETA with
generalized linear models. As in Section 2.3, we assume that the maximal and reduced models
belong to the class of GLM (McCullagh & Nelder, 1989). Specifically, assume the densities of
Y | X andY | X4, are of the forms

fly | 2:8,6) = exp({1/a(d)}(yh(az" B) — b{h(z" B)}) + cly: ),

and

gk | w4, 0k) = exp({1/a(or)}(yh(zy, k) — b{h(zy, O0k)}) + c(y; br)),

respectively, where a(-), b(-) and ¢(-) are known functions, h(-) = ¥'~1(g71(-)), g is a monotone
and differentiable link function, and ¢ and ¢y, are the dispersion parameters of the maximal and
the kth reduced models, respectively. Recall that we assume the maximal and the reduced models
have the same link function g. However, both the GENMETA and the Newton-Raphson’s method
are flexible to allow the maximal and the reduced models to have different link functions. We also
assume X = UK | X4, , where the vectors of the covariates are viewed as sets without confusion.  so

Denote the dimensions of 8y and /3 as dj and p, respectively. Assume d = Zle dy, > p since
the parameters of the maximal model will not be identifiable if d < p.

2.1. Casel: ¢ and ¢i’s are known.
The log-likelihood of gy, is
(Y | wa,;0%) = {1/alén)} (yh(a, O) — b{h(ah, 0k)}) + c(y; Or)-

Then, the score function is 55

s(y | wa,;0k) = {1/a(on)Hy — g~ (@h, 00) }0' (), Op) 2, -
Then,

u(x; B,0k) = Eyixsid(y | za,:00)} = {1/a(or) Hg ™ (@ B) — g7 (@ 0} (4, Ok) 2 1,
Thus, the vector of empirical moment functions for [ is

ur(X; 8, 0)

9

urk(X; 8, 0k)

where P, is the empirical measure with respect to the reference sample.

Let Q,(8) = UL(B)CU,(B) where C'is a d x d positive definite matrix. The goal is to find
the minimizer of @, (/). Its equivalent to solving the equation 60

D, (ﬁ ) =0,
where D,,(3) = GL(B)CU,(B) and G,,(B) = OU,(B)/0B is a d x p matrix. Then, the tth iter-
ation step for the Newton-Raphson’s method is
B = 5O — 1, (80) 71 D (8Y), ®)

where J,,(8) = 0D,,(5)/08 is a p X p matrix.
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4 P. KUNDU, R. TANG AND N. CHATTERJEE

Next, we write Dy, (/3) in a matrix form. The matrix form of G,,(/3) is
[a(¢1)g' {9~ (XTB)N W (X, 01) X, X
Gn(ﬁ) =P, = (1/n)X£diagWXrbinda
la(ex)g'{g™H(XTBN R (XR, 0k) X, XT

where Xiping = 1 ® X and X ;) is the reference data matrix; X4, = diag(Xa,,...,Xa,)
and X4, (nxd,) i the reference data matrix for the kth study; W = diag(W7,..., Wk),

Wi, = diag(wg1, - -« , Wkn)» Wi = [a(qﬁk)g'{gA(XiTB)}]*lh'(XZ;k’iék) fork=1,...,K,i=
1,...,nand?, and XZ-T and XA?N are the ith rows of X and X 4, , respectively. Similarly, the ma-
trix form of U,,(B) is U, (B) = (l/n)X:gdmgr, where r = (r1,...,7x) e = (k1 -+ oy Thn) T
and 7; = {1/a(¢x) H{g 1 (X]B) — 9_1(X,:gk,iéAk,i)}h,(sz,z‘éAk,i) for each k and 7. Thus, the
matrix form of D, () is

Dn(/B) = (1/n2)XgI;deXAdiagCXZ;dmgr' ®)

Next, we write J,(f) in a matrix form. Let G,,(3) be partitioned by columns as G, () =
(Gni(B),...,Gnp(B)), where G, ;(5) is ad x 1 column vector for j =1, ..., p. Then,

0 0
In(B8) = 55Dn(B) = 55Cn (F)OU()
35GE1(B)CU(B) Un ()05 (B) (10)
= : = G, (B)CGn(B) + :

26T (B)CUL(B) UL (B)C 85 G p(8)
Then, the matrix form of the first summand is (1/ n2)XTTbdeX Adiag C’ngmg W X, bind. The
jth row of the second summand is rTXAdmg CoG, ;(B)/05. Note that

0

%Gn,j(ﬁ) = (1/”)X£dmgLdemngbmd,
where L = diag(L1, ..., Lk), Ly = diag(lg1,- .., lg,) and, for each k and 1,

i = —g"{g~ " (X] B)}/(alon)lg' {g™ (XT B)NH (X, 00));
X;‘dmg = diag(X; Xjsiay) With K diagonal blocks and X, = diag(X1j, ..., Xy;) for

j=1,...,p. Then, for each j, the matrix form of U (8)COG,, ;(8)/08 is
(1/0?)r" X a0 CX Ay DX Xobina:

Jdiag

diag? "

Then, the second summand of (10) can be rewritten as (1/ nQ)X;t';deXrbmd, where V =
diag(vi, ..., vnr) and v; is the ith element of the row vector 77 X 4 diag CX:;';dmgL. Thus,

Tn(B) = (1/n*) X Jyina(W X4, CX 5 W+ V) Xoping = (1/07) X50aW* Xiping. (1)
* T
where W* = WXy, CXAdmgW + V.
Therefore, plugging (9) and (11) in (8), we get the following ¢th iteration step

lB(t+1) = IB(t) - (Xl'jt—)’indW*Xrbind)_1X£indWXAdiagCX£diagr7

which can be seen as the tth step of an iteratively reweighted least squares algorithm.
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2.2. Casell : ¢ and ¢p;.’s are unknown.
When ¢ and ¢y’s are unknown, we propose to first obtain the GENMETA estimator B of 5*
as above with ¢ s replaced by ¢;’s. Next, let us consider the estimation of ¢*, the true value of
¢. For the kth reduced model, we have an additional score function with respect to ¢, which is

51y 2,501 1) = = P (U 1) (R, 00))) + ¢ 3 ),

where ' (y; ¢r) is the derivative of ¢(y; ¢x) with respect to ¢x. Then, we obtain

X3 5,6. 00, 60) = — L (g XTBRCEE, 00) — MACCE00) + X3 .0, 1),

where qr = Ey|x(c/(Y, ¢x)). The distribution of Y | X depends on 3 and ¢ so that g also
depends on them. Then, the empirical moment vector for ¢ is
Un((b) = Pn(ul(X7 57 (z)a éla él)Ta ey ’LLK(X, B7 (bv éI<7 (ZEK)T)T-

We propose to estimate ¢* in the GMM framework. Thus, we need to compute the minimizer
of Up,(¢)TCU,(¢), where C is a known weighting matrix. As before, we use the Newton-
Raphson’s method and it can be written as

HH) = 60— (D) D,(69), @

where

T d d r.d
In(¢) = Uy (¢)Cd752qn(¢) + (%Qn(gb)) C%qn(éﬁ),

Dy(¢) = UL (¢M)Cdgn(4)/dp and g, () = Pu(q1(X; B, b, 61), - - -, axc (X3 B, ¢, dx))

Thus, when ¢ and ¢;’s are unknown, we first choose initial estimates () and ¢(*). Then,
we get the GENMETA estimator 5 by using equation (8) until a stopping rule is reached.
Subsequently, ¢(©), B and the study estimates are plugged in equation (12) and the process
is repeated until a stopping rule is reached to get the GENMETA estimator of ¢*. In each
Newton-Raphson’s step, the weighting matrix C is estimated by the estimates from the previous
step.

If the estimates of the study dispersion parameters, ¢;’s, are not provided directly, but the
the outcomes are standardized (var(Y') = 1), we can obtain them through the following relation
based on conditional variance formula

st — Lo o L 00* — (Pog ™ (X 00))
k) = ~ y
Pt {h(X}, 0k)}

where h(-) = b~(g71(-)) and P, is the empirical measure with the reference data. For normal
family where the canonical link is an identity function, we have b” () = 1, which implies the
denominator is 1.

3. FULL PROOF OF THEOREM 1 AND CHECKING REGULARITY ASSUMPTIONS IN TWO
EXAMPLES

We first provide a complete proof of Theorem 1 and then check the assumptions for logistic
and linear regression models.
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6 P. KUNDU, R. TANG AND N. CHATTERJEE

Proof of Theorem 1. First, we show the consistency of B Denote § and 6* as stacked
vectors of 6;’s and 6;’s, respectively. Denote Uy(3,6) = E(U(X;3,6)) and Qo(B) =
Uo(8,6%)TCUs(8,0%).

By (A1) and Lemma 2.3 of Newey & McFadden (1994), Q () is uniquely minimized at 5*.

By (A2), (A3), (A4) and Lemma 2.4 of Newey & McFadden (1994), Uy(/3,6) is continu-
ous and U, (/3, 0) converges uniformly to Uy (3, 0) for (3,0) € Dz x N.(0*), where N.(0*) is a
compact subset of N (6*) including 6*. Note that 0 is a consistent estimator of 6*. With proba-
bility going to one (wpgl),

sup |[Un(8,0) — Us(B,0)|] < sup 1Un(8,6) — Un(5,0)]].
BeDg (,B,G)EDngc(e*)

Then, U, (S, é) —Up(, é) converges uniformly in probability to O for 8 € Dg.
For any r > 0, wpgl,

sup ||Uo(8,0) — Uo(8,6)|| < sup E( sup |[U(8,6) = U(B,6%)]).
,BEDB ,BEDg ||0—9*||<r

By (A3), (A4) and dominant convergence theorem, E(supg_g«||<, [|U(B,0) —U(B,0%)||)
converges to 0 for every 8 € Dg as r decreases to 0. Note that E(supjg_g-|<, ||U(3,6) —
U(B,0%)||) decreases as r decreases for each 3. By (A2) and Dini’s theorem (see, for example,
Theorem 7.13 of Rudin (1976)), E(supjg_g+||<, [|U(B,0) — U(B,6%)||) converges uniformly in
probability to O for 3 € Dj as  decreases to 0. Then, Uy (8, 8) — Up(3, 8*) converges uniformly
in probability to O for 8 € Dg.

By combining the above two results, it follows that U,, (3, é) converges uniformly in probabil-
ity to Uy (3, 6*) for 8 € Dg.

By the triangle and Cauchy-Schwartz inequalities,

sup |Qn(8) — Qo(B)| < ||C|| sup ||Un(B,0) — Uo(B,60%)]?
ﬁeDB ,BEDg

+2|[C|| sup ||Uo(8,6%)[| sup [|Un(8,8) = Uo(B,6")]]
/BEDB ,BEDg

+|C = C|| sup [|Uo(8,6%)]
ﬁeDﬁ

Since C is a consistent estimator of C, ||C|| converges in probability to ||C||, which is finite;
||C — C|| converges in probability to 0. Since Uy(f3,0*) is continuous for 8 € Dg and Dy is
compact, Supgep, [[Uo(B,6%)|? is finite. Since SUPgep, |UL(8,60) — Up(B,6%)|| converges
in probability to 0, supgep, |Un(B,0) — Uo(B,6*)||* converges in probability to 0. Thus,
Qn(B) — Qo(B) converges uniformly in probability to 0 for 5 € Dg. Recall that 3* is the

unique minimizer of Qo (/). By Theorem 2.1 of Newey & McFadden (1994), B is a consistent
estimator of 3*.

Next, we derive the asymptotic distribution of the GENMETA estimator . Note that /3 is a
solution to

Gn(ﬁa é)TéUn(Ba é) =0,
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where G,,(3,6) = dU,(8,6) /83, the Jacobian of U, (3,0). On the other hand, by mean value
theorem,

Un(,0) = Un(8*,0) + Gu(B,0)(8 - 87,

where 3 denotes a matrix each column of which corresponds to each element of U, (3, é) After
left multiplying G, (3, 0)” C to the above identity, it follows

n'/2(6 - B*) = —Mn?U,(8*,6),

where M, = (Gn(83,0)7CGL(B,0))'Gn(53,0)7C.

Consider M,,. Since B is a consistent estimator of 3*, each column of 3 is a consistent estima-
tor of 5*. On the other hand, 0 is a consistent estimator of §*. By (AS5), (A6) and Lemma 2.4 of
Newey & McFadden (1994), G,,(3, 6) converge uniformly to continuous E{0U (X; 3,6)/05}
for (5,0) € Dg x N.(6*), where N.(6*) is a compact subset of N (6*), including 6*. Since B
and each column of /3 converge in probability to 3* and d is a consistent estimator of 6%, by, for
example, Theorem 9.4 of Keener (2010), both G,, (3, 0) and G,(3, 0) converges in probability to
I = E{dU(X;3*, 6*)/05}. Thus, by noting C—C' in probability, M,, converges in probability
to (ITCT)~'rte.

Consider n'/2U,,(5*, ). By mean value theorem,

Un(B*,0) = Un(8*,0%) + Vi(5*,8)(8 — 6%),

where V/, is the Jacobian of U, (8%, #) as a function of § and @ is a matrix each column of which
corresponds to each element of U, (5%, #). Thus,

n'2U,(8*,0) = n'2U, (8", 0%) + Vi (8%, 0)n'/%(6 — 6%).

By (A9) and central limit theorem, n'2U,(5*, 6%) 4N (0, A). Since 6 is a consistent estimator
of 0*. each column of § converges in probability to §*. Similar to the above argument, by (A7),
(A8), Lemma 2.4 of Newey & McFadden (1994) and Theorem 9.4 of Keener (2010),

Vo (B*,0)—diag(Wy, Wy, ..., W) in probability,
where, fork = 1,2, ..., K, Wy, = E{0ux(X, 5*,01)/00} |9k:92. The K study data sets are in-

dependent. So are ék’s. Note that n; /n — ¢k, where ¢y, is a positive constant fork = 1,2, ..., K.
Then n'/2(6 — 6*) converges in distribution to

N(O, diag((l/cl)El, (1/02)22, ey (1/6[{)2[())

Since the K data sets and the reference data are independent, the above results imply that
n'/2U,(6*,6) converges in distribution to N (0, A + A), where A is a block diagonal matrix
whose kth block is (1/c, )W S W fork =1,..., K.

Therefore, with the above two results on M, and nt/ 2Un(ﬁ*7 é) and by Slutsky’s theorem, the
asymptotic normality of n'/2(3 — 5*) follows. O

Example 1 (Check Assumptions for Logistic Regression Model). Suppose the maximal model
is

1
Y|X~B 11'{ }
| emnoulliq 7— oxp(—XT5)

135

140

145



150

155

8 P. KUNDU, R. TANG AND N. CHATTERJEE

where X = (1, X1)T, X =(X1,...,Xy)T is the vector of covariates and f* =
(B85, BT, - -- ,B;)T is the vector of coefficients of interest. There are K independent stud-
ies and the reduced model of the kth study is

1
Y| X4, ~ Bernoulli{ },
| X 14+ exp(—X:;’;ka)
where X4, = (1, X:{;k)T, X a, is asub-vector of X with A C {1,2,...,p}. Forexample, X4 =
(X1, X2)T when A = {1,2}.
The global identification assumption (A1) usually holds and Dg is a compact set. Next, we
check the assumptions (A3) to (A9). The moment functions from the kth study is

1 1
up(X;5,0,) = ( —
k(X5 8, 0k) 14 e XTB 1 e—ngek

) Xa,-

It is a continuous function of 5 and . Then, (A3) is satisfied. Note that

1 1
s [|( - ) Xall < 201X,
(B,0)€Dgx N (6*) 1+ e—XT8 1+ e—Xz;ka k

where || - || and || - ||1 are the I and [ norms, respectively. Then, given E(]|X;|) < oo for each
1, (A4) is satisfied. Also,
0 e X8
—up(X;B,0,) = —— X4 XT 13
8BUI€( 7/87 IC) (1—|—6_XT6)2 Ak ) ( )
which does not depend on 6}, and is continuous for each 5. Then, (A5) is verified. Note that

e X' T T
sup I 5 XA, X < [ XX |1

(B.0)eDsxN (o) (14 e X7F)
Given F(X?) < oo for each i, (A6) is satisfied. Note that

T
0 e K0

—up(X; 5%,0) = —

X4 XT
a0y, A Ap

B
(14 “a%)2

which is continuous for each 8. Then, (A7) is satisfied. Note that
e—XA?k O

sup = X X4 | < 11X X

(B,0)€Dgx N(6%) 1+ e_ngakﬂ
Given E(X?) < oo for each i, (A8) is satisfied. The absolute value of each element of A(3*, 0*)
is less than 1, E(]X;|) or E(|X;X;|) for each i and j. Given E(X?) < oo, A(8*,6*) is finite.
Note that I'(5*, 0;) is a stacked matrix of (13) for £ = 1,..., K. Given each covariate of the
maximal model is in at least one reduced model and E[{e=X"#/(1 + ¢=X"#)2} X XT] is posi-
tive definite, I'(8*, 6*) is of full rank. Then, (A9) is verified.

Example 2 (Check Assumptions for Linear Regression Model). Suppose the true maximal
model is

Y | X ~ N(XTp* 0%?),

where X = (X1, Xo,..., X,)"s 8= (8], 55,...,8;)": E(X) =0 and E(Y) =0, that is,
both X and Y are centered. There are K independent studies and the reduced model of the
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kth study is
Y | Xa, ~ N(X} Ok, 0p)

For simplicity, assume o*2 is known and the unknown parameter is 3*. The case with unknown
o*2 can be similarly considered.
The moment functions from the kth reduced model is

1
u(X; B; Ok, 01) = ;(XAkXT/B — X, X% 0k,
k

which is linear in 5. Note that

0 1
%uax;ﬁ;ek,a%) = U—zXAkXT- (14)

Given each covariate of the maximal model is in at least one reduced model and F(X X7T) is
positive definite, I'(8*, {05}, {o}2}) = Oup(X; B*; {05}, {0}2}) /08 is of full rank. Given C'is
positive definite, (A1) is satisfied. Suppose Dg is a compact set. Then, (A2) is satisfied.

Next, we check the assumptions (A3) to (A9). Note that u(X; 5; Ok, alz) is continuous for
every (8, 0, o7). Then, (A3) is satisfied. Note that

1 1
sup || (Xa, X758 — Xa, X5, 00)] <

— (18] + 116:ID[ X X1,
(B.0k,02) Tk Ok

Denote a finite upper bound of ||§|| for 8 € Dg as C(3), a finite upper bound of ||6y|| for 6, €
N(6;) as C(6y), and a positive finite lower bound of o7 for o2 € N (6;}) as o7 . The supremum of
(1/72) 1811+ 104ll) for (B,0k,02) € Dy x N(8}) x N(o;2) is bounded by (1/02)(C(5) +
C(6x)). Given E(X?) < oo for each 4, (A4) is satisfied. Note that Quy(X; 3; 0k, o) /0B does
not depend on 3 and 6, and is continuous for each 0,%. Then, (AS5) is satisfied. Note that

1 1
sup || X 4, XT|| < || XXT);.
oZeN(o}?) Tk oL
Given E(X?) < oo for each 4, (A6) is satisfied. Note that
8 1 1
- - X:3:0 2 ={__X XT (X XT _X XTH
8(9k702)uk( 767 k;Uk) { O']% A Ap» 0_21;( Ag ﬁ AR XAy k)},

which is continuous for every (3, 0, az). Then, (A7) is satisfied. For every (83, 6, a,%) € Dg x
N(6;, N(0}?)), the I3 norm of the above partial derivative is less than or equal to

1 1
5+~ (C(B) + CONIXXT .
L L

Given E(X?) < oo for each i, (A8) is satisfied. Each element of A(3*, {05}, {o}2}) is equal to
a constant times F(X;, X;, X;,X;,) for some i1, 42,13, i4. Given E(X;l) < oo for each 7, A is
finite. Note that T'(3*, {05}, {o}?}) is a stacked matrix of (14) for k = 1,..., K. As in checking
(A2), given each covariate of the maximal model is in at least one reduced model and F(X X 1)
is positive definite, I' is of full rank. Then, (A9) is verified.

160
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4. SIMULATION RESULTS FOR LOG-NORMALLY DISTRIBUTED COVARIATES

Table 1: Robustness of GENMETA Estimation (Log-normally Distributed Covariates)

Setting Study-I Study-II ~ Study-III  Reference 3] Bias SD(ESD) RMSE CR AL

b b o o Bi 010 .076(075) 077 941 288

I ot ot o} o} B3 011 .064(.061) .065 947 237
ob ob b b B3 006 .066(.064) 066 954 246

I I Lm b Bi 010 .079(072) 079 930 272

o} o} of o} B85 002 .056(.054) .056 948 211

ob ob Ob ob B3 -002 .062(058) 062 .945 222

b b b b BT 032 .088(088) .094 930 .339

I ot ol o} of B3 -002 .062(057) .062 941 221
ob ob b b B3 -005 .074(074) 074 967 .286

b I o b B 021 .079(077) 081 929 294

op o7 o} of B3 0005 .055(.055) .055 956 .213

b Py oo oo By -008 .065(064) 065 954 246

b I o o B -062 .107(.118)  .124 934 382

ot ot o} of 5 .021  .070(.065) .073 930 250

ob ob b Ph 5 030 .087(096) .092 956 .322

b b o o T .039  .072(069) .081  .891 264

ot ot ot ot 5 .023  .065(.062) .069 932 240

oo oo oo oI 5 018  .061(058) 064 930 .224

Lo Lo Lo b ¥ .053  .079(075)  .095 866 .290

111 o} o} o} o} s 019 .065(.063) .067 942 242
o1 b on oI 3 .012  .068(.064) .069 935 249

I b b b T 032 .089(084)  .095 912 .322

ot ot o} o} s 010 .062(.062) .063 946 .240

pL Pb Ph Po B3 -009 .073(071) 073 942 273

b b o o B -025 .113(108) .116 954 .407

ot ot o} o} B85 017 .065(.064) .067 951 .248

o1 ob Ph Ph B3 -002 .091(091) .091 965 .347

b b B 007 .096(104) .096  .968 .365

v X1 >-05 X2>0 of of B3 242 353(117) 428 572 401
Xo < 0.5 Ob Ob B3 -015 .067(081) .068 .971 .283

Biases, standard deviation (SD), estimated standard deviation (ESD), square roots of mean square errors (RMSE),
coverage rates (CR), and average lengths (AL) of 95% confidence intervals of the GENMETA estimates using the
study covariance estimators in the setting of logistic regression. In setting (I), data are simulated in ideal setting where
the covariate distribution is a log-normal distribution with the natural logarithm of the covariates being characterized
by mean, sd and correlation of normal variates and are assumed to same across all populations. In setting (I)-(IV),
the assumption is violated by creating variations in mean/sd, correlations of the underlying normal distribution and
selection criterion across the studies and reference sample. The vector of means, variances and correlations of the
underlying normal covariates are denoted by p. = (u1, pz2, p3), 02 = (03,03,03) and p. = (p12, p23, p13) for * €
{b,1,m,h}, where u, = (0,0,0), ptm = (0.5,0.5,0.5), un = (1,1,1); 6 = (1,1,1), 07 = (0.5,0.5,0.5), 67 =
(2,2,2) and pp = (0.3,0.6,0.1), pr, = (0.4,0.8,0.2), p; = (0.2, 0.4, 0). Estimated standard deviation are obtained
by the asymptotic formula (2) in the main paper and used to construct 95% confidence interval.
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